RESEARCH INTERESTS	Self-Supervised Learning, Interpretable Representation Learning, Generative Models, Numerical Linear Algebra Methods for Learning and Inference
EXPERIENCE	 Postdoctoral Researcher, Empirical Inference, Max Planck Institute for Intelligent Systems Tübingen, Germany, Oct 2021 – present Working on the theoretical understanding of self-supervised learning methods; Designing methods for evaluation and practical and interpretable representation learning; Exploring causal inference for gene regulatory networks. Al Resident, Google X Mountain View, USA, Jul 2019 – Jan 2020 Researched tensor network representation for parameters in Transformer architecture for ~2x inference speed-up and model compression (featured in Tensorflow Blog).
	Junior Researcher, Skolkovo Institute of Science and Technology Moscow, Russian Federation, August 2016 – September 2021 Researched certifiable neural network robustness to semantic transformations, energy-based generative models, optimization in deep learning, approximation in kernel methods.
SELECTED PUBLICATIONS	M. Munkhoeva, I. Oseledets Bridging Spectral Embedding and Matrix Completion in Self-Supervised Learning (preprint) Laplacian-based dimensionality reduction and matrix completion to understand SimCLR-like methods A.Tsitsulin, M. Munkhoeva, B. Perrozi Unsupervised Embedding Quality Evaluation (paper) Matrix incoherence as a representation quality metric indicating highly entangled features Workshop on Topology, Algebra and Geometry in Machine Learning (TAG-ML) at ICML 2023
	M. Pautov, N. Tursynbek, M. Munkhoeva , N. Muravev, A. Petiushko, and I. Oseledets <i>CC-Cert: A probabilistic approach to certify general robustness of neural networks</i> (paper) AAAI Conference on Artificial Intelligence (AAAI 2022) A.Tsitsulin, M. Munkhoeva , D. Mottin, P. Karras, I. Oseledets and E. Müller <i>FREDE: Linear-Space Anytime Graph Embeddings</i> (paper) International Conference on Very Large Databases (VLDB 2021) [code]
	 A.Tsitsulin*, M. Munkhoeva*, B.Perrozi Just SLaQ When You Approximate: Accurate Spectral Distances for Web-Scale Graphs (paper) Efficient numerical method, stochastic Lanczos quadrature, to handle huge graphs International World Wide Web Conference (WWW 2020), featured in Google Al Blog A.Tsitsulin*, M. Munkhoeva*, D. Mottin, P. Karras, A. Bronstein, I. Oseledets, E. Müller The Shape of Data: Intrinsic Distance for Data Distributions (paper) Efficiently approximate descriptors of data samples to discern synthetically generated data International Conference on Learning Representations (ICLR 2020) [code]
	M. Munkhoeva, Y. Kapushev, E. Burnaev and I. Oseledets, <i>Quadrature-based Features for Kernel Approximation</i> (Spotlight) (paper) Efficient feature maps via sparse orthogonal matrix factors generalize random Fourier features Neural Information Processing Systems (NeurIPS 2018) [code]
EDUCATION	Skolkovo Institute of Science and Technology (Skoltech), April 2021 Ph.D. in Computational and Data Science and Engineering, Advisor: Ivan Oseledets Thesis: Fast Numerical Linear Algebra Methods for Machine Learning Skoltech, June 2016 M.Sc. in Computational Mathematics Thesis: Deep Learning for Machine Translation with Non-Parallel Corpora Massachusetts Institute of Technology (MIT), Visiting student, Fall 2015 National Research University Higher School of Economics (NRU HSE)
RELEVANT	Bachelor Degree, June 2014, GPA 4.9/5, magna cum laude (top 3%)ProgrammingPython, JAX, PyTorch, Tensorflow
SKILLS SERVICE	Miscellaneous & La TEX, Git, Docker, Linux, cluster administration, SQL Reviewer, ICML, ICLR, NeurIPS, AAAI Interviewer for European Computer Science Ph.D. programmes (IMPRS-IS, ELLIS, CLS) Evaluator for CaCTüS internship programme for young scientists held back by societal constraints
AWARDS	Spring 2019The Ilya Segalovich Award, Yandex scholarship for young researchersSpring 2019MLSS in London 2019 Travel GrantFall 2018NeurIPS Travel GrantSpring 2014NRU HSE Scholarship (for best academic performance)